#框架

0 关注者 · 9 帖子

框架是一种工具集,可简化开发过程或/和使该过程更高效。

文章 Lilian Huang · 十一月 6, 2025 7m read

Interoperability on Python (IoP) 是一个概念验证项目,旨在展示与 Python 优先方式相结合时 InterSystems IRIS Interoperability Framework 的强大功能。IoP 利用Embedded Python(嵌入式 Python,InterSystems IRIS 的一个功能)使开发者能够用 Python 编写互操作性组件,从而可以与强大的 IRIS 平台无缝集成。本指南专为初学者编写,全面介绍了 IoP、其设置以及创建第一个互操作性组件的操作步骤。 阅读完本文,您将能够清楚地了解如何使用 IoP 构建可扩缩、基于 Python 的互操作性解决方案。

0
0 13
文章 Lilian Huang · 十月 24, 2025 14m read

学习如何使用 LangGraph 设计结合了推理、矢量搜索和工具集成的可扩缩自主 AI 智能体。

cover

概括

  • AI 智能体是一种超越简单的聊天机器人的自主系统,它结合了记忆库、上下文,并具有自动完成任务的主动性。
  • LangGraph 是一种框架,它使我们能够利用具有内置状态管理的节点(任务)和边缘(连接),构建复杂的 AI 工作流。
  • 本指南将指导您构建 AI 赋能的客户支持智能体,该智能体可以划分优先级,识别相关主题,并确定是上报还是自动回复。

那么,AI 智能体究竟是什么?

让我们直面它吧 —“AI 智能体”听起来就像可以接管会议室的机器人。 实际上,它们是您得力的助手,可以简化复杂的工作流,消除重复性任务。 您可以把它们看作是聊天机器人的下一个进化阶段:它们不只是简单地等待提示;它们可以发起行动,协调多个步骤,并随时进行调整。

过去,打造一个“智能”系统意味着兼顾语言理解、代码生成、数据查找等各种不同的模型,然后将它们粘合在一起。 您的一半时间花在了集成上,另一半时间则花在了调试上。

智能体彻底颠覆了这一切。 它们将上下文、主动性和适应性融合在一个精心编排的流程中。 它们不仅实现了自动化,更是肩负使命的智者。 借助 LangGraph 之类的框架,我相信,组建一支自己的智能体团队实际上会很有趣。

image

LangGraph 究竟是什么?

LangGraph 是一种创新型框架,它彻底改变了我们构建涉及大语言模型 (LLM) 的复杂应用程序的方式。

想象一下,您正在指挥一支管弦乐队:每种乐器(或“节点”)都需要知道何时演奏,声音有多大,顺序如何。 这种情况下,LangGraph 就是您的指挥棒,为您提供以下内容:

  • 图结构:它采用具有节点和边缘的图结构,使开发者能够设计适应各种分支和循环的灵活非线性工作流。 它可以反映复杂的决策过程,类似于神经通路的运作方式。
  • 状态管理:LangGraph 提供了各种内置工具,可以实现状态保持和错误恢复,简化了应用程序中各个阶段的上下文数据的维护。 借助 Zep 等工具,它可以在短期记忆和长期记忆之间高效切换,提高了交互质量。
  • 工具集成:借助 LangGraph,LLM 智能体可以轻松与外部服务或数据库协作,获取真实的数据,从而改进应用程序的功能和响应性。
  • 人机协同:除了可以实现自动化外,LangGraph 还可以适应工作流中的人为干预,这对于需要分析监督或伦理考虑的决策过程至关重要。

无论您是在构建具有真实记忆的聊天机器人、交互式故事引擎,还是能够处理复杂问题的智能体团队,LangGraph 都可以将令人头疼的管道工程转变成简单明了、直观的状态机。

开始

要开始使用 LangGraph,您需要进行基本的设置,通常包括安装 langgraph 和 langchain-openai 等必要的库。 然后,您可以定义图中的节点(任务)和边缘(连接),有效地实现短期记忆的检查点,并利用 Zep 满足更持久的记忆需求。

操作 LangGraph 时,请记住以下几点:

  • 具有灵活性的设计:利用强大的图结构来解释并非严格线性的潜在工作流分支和交互。
  • 以深思熟虑的方式与工具交互:利用外部工具增强 LLM 功能,而不是取而代之。 为每个工具提供全面的描述,以实现精确使用。
  • 采用丰富的记忆解决方案:高效地使用记忆库,留意 LLM 的上下文窗口,并考虑集成外部解决方案,以实现自动事实管理。

现在,我们已经介绍 LangGraph 的基础知识,我们来看一个实例。 为此,我们将开发一个用于提供客户支持的 AI 智能体。

这个智能体将接收电子邮件请求,分析电子邮件正文中的问题描述,然后确定请求的优先级和适当的主题/类别/部门。

系好安全带,我们开始吧!

buckle up

首先,我们需要定义什么是“工具”。 可以把它看作是智能体的专属“助理”,使其能够与外部功能进行交互。

@tool 装饰器在这里必不可少。 LangChain 简化了自定义工具的创建,这意味着首先,定义一个 Python 函数,然后应用 @tool 装饰器。

tools

为了进行说明,我们来创建第一个工具。 这个工具将帮助智能体根据电子邮件内容划分 IT 支持工单的优先级:

    from langchain_core.tools import tool
    
    @tool
    def classify_priority(email_body: str) -> str:
        """Classify the priority of an IT support ticket based on email content."""
        prompt = ChatPromptTemplate.from_template(
            """Analyze this IT support email and classify its priority as High, Medium, or Low.
            
            High: System outages, security breaches, critical business functions down
            Medium: Non-critical issues affecting productivity, software problems
            Low: General questions, requests, minor issues
            
            Email: {email}
            
            Respond with only: High, Medium, or Low"""
        )
        chain = prompt | llm
        response = chain.invoke({"email": email_body})
        return response.content.strip()

太棒了! 现在,我们有一个提示,指示 AI 接收电子邮件正文,对其进行分析,并将其优先级分为“高”、“中”或“低”。

就是这样! 您刚刚编写了一个智能体可以调用的工具!

接下来,我们创建一个类似的工具来识别支持请求的主要主题(或类别):


    @tool
    def identify_topic(email_body: str) -> str:
        """Identify the main topic/category of the IT support request."""
        prompt = ChatPromptTemplate.from_template(
            """Analyze this IT support email and identify the main topic category.
            
            Categories: password_reset, vpn, software_request, hardware, email, network, printer, other
            
            Email: {email}
            
            Respond with only the category name (lowercase with underscores)."""
        )
        chain = prompt | llm
        response = chain.invoke({"email": email_body})
        return response.content.strip()

现在,我们需要创建一个状态,在 LangGraph 中,这一小部分非常重要。

把它想象成图的中枢神经系统。 这就是节点之间的通信方式,就像优等生在课堂上传递纸条一样。

文档中显示:

“状态是表示应用程序当前快照的共享数据结构。”

在实践中呢? 状态是在节点之间移动的结构化消息。 它将一个步骤的输出作为下一个步骤的输入。 基本上,它是将整个工作流粘合在一起的粘合剂。

因此,在构建图之前,我们必须先定义我们的状态结构。 本例中,我们的状态包括以下内容:

  • 用户请求(电子邮件正文)
  • 指定的优先级
  • 确定的主题(类别)

它简单明了,因此您可以像专业人士一样浏览图。

    from typing import TypedDict

    # Define the state structure
    class TicketState(TypedDict):
        email_body: str
        priority: str
        topic: str
        
    
    # Initialize state
    initial_state = TicketState(
        email_body=email_body,
        priority="",
        topic=""
    )

节点与 边缘:LangGraph 的关键组成部分

LangGraph 的基本要素包括节点边缘

  • 节点:它们是图中的操作单元,执行实际工作。 节点通常由可以执行任何逻辑(从计算到与语言模型 (LLM) 或外部集成交互)的 Python 代码组成。 从本质上讲,节点就像传统编程中的个别函数或智能体。
  • 边缘:边缘定义节点之间的执行流,决定接下来会发生什么。 它们充当连接器,允许状态根据预定义条件从一个节点转换到另一个节点。 在 LangGraph 中,边缘在协调节点之间的序列和决策流方面至关重要。

为了掌握边缘的功能,我们来看一个消息传递应用程序的简单类比:

  • 节点类似于积极参与对话的用户(或他们的设备)。
  • 边缘代表着用户之间能够促进沟通的聊天主题或连接。

当用户选择一个聊天主题来发送消息时,会有效地创建一个边缘,将他们与另一个用户连接在一起。 与 LangGraph 状态的结构化模式类似,每次交互(无论是发送文本、语音还是视频消息)都遵循预定义的顺序。 它确保了沿边缘传递的数据的一致性和可解释性。

不同于事件驱动型应用程序的动态特性,LangGraph 采用在整个执行过程中保持一致的静态模式。 它简化了节点之间的通信,使开发者可以依赖稳定的状态格式,从而确保无缝的边缘通信。

设计基本工作流

可以将 LangGraph 中的流工程理解为设计一个状态机。 在这个情境中,每个节点代表一个不同的状态或处理步骤,而边缘定义了这些状态之间的转换。 这种方式对想要在 AI 的确定性任务序列与动态决策能力之间取得平衡的开发者特别有用。 我们来使用前面定义的 TicketState 类初始化 StateGraph,开始构建流程。

    from langgraph.graph import StateGraph, START, END
    
    workflow = StateGraph(TicketState)

节点添加:节点是基本要素,用于执行划分工单优先级或识别其主题等特定任务。

每个节点函数均接收当前状态,执行其操作,并返回一个字典以更新状态:

   def classify_priority_node(state: TicketState) -> TicketState:
        """Node to classify ticket priority."""
        priority = classify_priority.invoke({"email_body": state["email_body"]})
        return {"priority": priority}

    def identify_topic_node(state: TicketState) -> TicketState:
        """Node to identify ticket topic."""
        topic = identify_topic.invoke({"email_body": state["email_body"]})
        return {"topic": topic}
        
        
    workflow.add_node("classify_priority", classify_priority_node)
    workflow.add_node("identify_topic", identify_topic_node)

classify_priority_node 和 identify_topic_node 方法将更改 TicketState 并发送参数输入。

边缘创建:定义连接节点的边缘:


    workflow.add_edge(START, "classify_priority")
    workflow.add_edge("classify_priority", "identify_topic")
    workflow.add_edge("identify_topic", END)

classify_priority 确定起点,而 identify_topic 确定到目前为止工作流的终点。

编译与执行:配置节点和边缘后,编译并执行该工作流。


    graph = workflow.compile()
    result = graph.invoke(initial_state)

太好了! 您还可以生成 LangGraph 流的可视化表示。

graph.get_graph().draw_mermaid_png(output_file_path="graph.png")

如果将代码运行到此点,您就会看到一个与下面类似的图:

first_graph.png

这幅图直观地显示了一次顺序执行:开始,然后划分优先级,接着确定主题,最后结束。

LangGraph 最强大的一个方面是它的灵活性,这让我们可以创建更复杂的流程和应用程序。 例如,我们可以修改工作流,使用以下行将 START 中的边缘添加到两个节点:

    workflow.add_edge(START, "classify_priority")
    workflow.add_edge(START, "identify_topic")

这一更改意味着智能体将同时执行 classify_priority 和 identify_topic。

LangGraph 中另一个非常有用的功能是能够使用条件边缘。 它们允许工作流根据对当前状态的评估进行分支,实现任务的动态路由。

我们来增强工作流。 我们将创建一个新工具,分析请求的内容、优先级和主题,以确定它是否为需要上报(例如,为人工团队提交工单)的高优先级问题。 如果不需要,将为用户生成一个自动响应。


    @tool
    def make_escalation_decision(email_body: str, priority: str, topic: str) -> str:
        """Decide whether to auto-respond or escalate to IT team."""
        prompt = ChatPromptTemplate.from_template(
            """Based on this IT support ticket, decide whether to:
            - "auto_respond": Send an automated response for simple/common or medium priority issues
            - "escalate": Escalate to the IT team for complex/urgent issues
            
            Email: {email}
            Priority: {priority}
            Topic: {topic}
            
            Consider: High priority items usually require escalation, while complex technical issues necessitate human review.
            
            Respond with only: auto_respond or escalate"""
        )
        chain = prompt | llm
        response = chain.invoke({
            "email": email_body,
            "priority": priority,
            "topic": topic
        })
        return response.content.strip()
        

此外,如果请求被确定为低优先级或中等优先级(导致“auto_respond”决策),我们将执行矢量搜索来检索历史回答。 然后,将使用此信息来生成适当的自动回答。 不过,这需要两个额外的工具:


    @tool
    def retrieve_examples(email_body: str) -> str:
        """Retrieve relevant examples from past responses based on email_body."""
        try:
            examples = iris.cls(__name__).Retrieve(email_body)
            return examples if examples else "No relevant examples found."
        except:
            return "No relevant examples found."

    @tool
    def generate_reply(email_body: str, topic: str, examples: str) -> str:
        """Generate a suggested reply based on the email, topic, and RAG examples."""
        prompt = ChatPromptTemplate.from_template(
            """Generate a professional IT support response based on:
            
            Original Email: {email}
            Topic Category: {topic}
            Example Response: {examples}
            
            Create a helpful, professional response that addresses the user's concern.
            Keep it concise and actionable."""
        )
        chain = prompt | llm
        response = chain.invoke({
            "email": email_body,
            "topic": topic,
            "examples": examples
        })
        return response.content.strip()

现在,我们为这些新工具定义相应的节点:

    
    def decision_node(state: TicketState) -> TicketState:
        """Node to decide on escalation or auto-response."""
        decision = make_escalation_decision.invoke({
            "email_body": state["email_body"],
            "priority": state["priority"],
            "topic": state["topic"]
        })
        return {"decision": decision}
        
    
    def rag_node(state: TicketState) -> TicketState:
        """Node to retrieve relevant examples using RAG."""
        examples = retrieve_examples.invoke({"email_body": state["email_body"]})
        return {"rag_examples": examples}

    def generate_reply_node(state: TicketState) -> TicketState:
        """Node to generate suggested reply."""
        reply = generate_reply.invoke({
            "email_body": state["email_body"],
            "topic": state["topic"],
            "examples": state["rag_examples"]
        })
        return {"suggested_reply": reply}
        
    
    def execute_action_node(state: TicketState) -> TicketState:
        """Node to execute final action based on decision."""
        if state["decision"] == "escalate":
            action = f"🚨 ESCALATED TO IT TEAM\nPriority: {state['priority']}\nTopic: {state['topic']}\nTicket created in system."
            print(f"[SYSTEM] Escalating ticket to IT team - Priority: {state['priority']}, Topic: {state['topic']}")
        else:
            action = f"✅ AUTO-RESPONSE SENT\nReply: {state['suggested_reply']}\nTicket logged for tracking."
            print(f"[SYSTEM] Auto-response sent to user - Topic: {state['topic']}")
        
        return {"final_action": action}
        
        
        
    workflow.add_node("make_decision", decision_node)
    workflow.add_node("rag", rag_node)
    workflow.add_node("generate_reply", generate_reply_node)
    workflow.add_node("execute_action", execute_action_node)

然后,条件边缘将使用 make_decision 节点的输出来定向流:

    workflow.add_conditional_edges(
        "make_decision",
        lambda x: x.get("decision"),
        {
            "auto_respond": "rag",
            "escalate": "execute_action"
        }
    )

如果 make_escalation_decision 工具(通过 decision_node)产生“auto_respond”,工作流将继续通过 RAG 节点(检索示例),然后是 generate_reply 节点(设计回答),最后是 execute_action 节点(记录 auto-response)。

相反,如果决策是“escalate”,流程将绕过 RAG 和生成步骤,直接转到 execute_action 来处理上报。 要添加剩余的标准边缘来完成图,请执行以下操作:

    workflow.add_edge("rag", "generate_reply")
    workflow.add_edge("generate_reply", "execute_action")
    workflow.add_edge("execute_action", END)

数据集注释:对于此项目,我们用于支持检索增强生成 (RAG) 的数据集来自 Hugging Face 上的 Customer Support Tickets 数据集。 对该数据集进行了筛选,以便只包含分类为技术支持并限制为英语的条目。 它确保 RAG 系统只为技术支持任务检索高度相关的特定领域的示例。

此时,我们的图应当与下图类似:

graph.png

当您使用一封电子邮件来执行此图,并导致高优先级分类和“escalate”决策时,您将看到以下响应:

image.png

同时,被分类为低优先级并导致“auto_respond”决策的请求将触发与下面类似的回复:

image.png

那么… 这一路都很顺利吗?

并不完全是。 有一些问题需要注意:

  • 数据隐私:小心敏感信息 — 这些智能体需要防护。
  • 计算成本:某些高级设置需要大量资源。
  • 幻觉:LLM 偶尔也会编造一些内容(不过仍然比大多数实习生聪明)。
  • 非确定性:相同的输入可能会返回不同的输出,这对创造力来说是好事,但对严格的流程来说却很棘手。

不过,大多数缺点都可以通过良好的规划、合适的工具和一点点思考加以控制。

LangGraph 将 AI 智能体从流行语变成实实在在的有效解决方案。 无论您是要自动执行客户支持,处理 IT 工单,还是构建自主应用程序,这个框架都让操作变得可行,甚至有趣。

您有任何问题或反馈吗? 请说出来。 AI 革命需要像您这样的建设者。

0
0 9
文章 Lilian Huang · 四月 16, 2025 7m read

Hi 大家好
在本文中,我讲介绍我的应用 iris-AgenticAI .

代理式人工智能的兴起标志着人工智能与世界互动方式的变革性飞跃--从静态响应转变为动态、目标驱动的问题解决方式。参看 OpenAI’s Agentic SDK ,  OpenAI Agents SDK使您能够在一个轻量级、易用且抽象程度极低的软件包中构建代理人工智能应用程序。它是我们之前的代理实验 Swarm 的生产就绪升级版。

该应用展示了下一代自主人工智能系统,这些系统能够进行推理、协作,并以类似人类的适应能力执行复杂任务。

应用功能

  • Agent Loop 🔄 一个内置循环,可自主管理工具的执行,将结果发回 LLM,并迭代直至任务完成。
  • Python-First 🐍 利用本地 Python 语法(装饰器、生成器等)来协调和连锁代理,而无需外部 DSL。
  • Handoffs 🤝 通过在专业代理之间委派任务,无缝协调多代理工作流程。
  • Function Tools ⚒️ 用 @tool 修饰任何 Python 函数,可立即将其集成到代理的工具包中。
  • Vector Search (RAG) 🧠 原生集成向量存储(IRIS),用于 RAG 检索。
  • Tracing 🔍 内置跟踪功能,可实时可视化、调试和监控代理工作流(想想 LangSmith 的替代方案)。
  • MCP Servers 🌐 通过 stdio 和 HTTP 支持模型上下文协议(MCP),实现跨进程代理通信。
  • Chainlit UI 🖥️ 集成 Chainlit 框架,可使用最少的代码构建交互式聊天界面。
  • Stateful Memory 🧠 跨会话保存聊天历史、上下文和代理状态,以实现连续性和长期任务。
0
0 118
文章 Michael Lei · 四月 9, 2024 7m read

 

人工智能不仅限于通过带有说明的文本生成图像,或通过简单的指示创建叙事。
您还可以制作图片的变体,或为已有图片添加特殊背景。
此外,您还可以获得音频转录,无论其语言和说话者的语速如何。
让我们来分析一下文件管理是如何工作的。

0
0 133
InterSystems 官方 Claire Zheng · 九月 11, 2023

InterSystems 很高兴地宣布InterSystems Supply Chain Orchestrator™的核心组件,即 InterSystems IRIS for Supply Chain 2023.1 版,现已正式发布 (GA)。

InterSystems Supply Chain Orchestrator (InterSystems 供应链协调器)基于 InterSystems IRIS® 构建,InterSystems IRIS® 是我们完整的云优先数据平台,支持智能数据编织(smart data fabric)架构,使构建和部署连接数据和应用程序孤岛的高性能、支持机器学习的应用程序变得更加容易。它将 InterSystems IRIS 的强大功能与供应链特定的加速器和框架结合在一起,为供应链编排、需求感知和预测、履行以及快速消费品重新包装提供优化的解决方案。

InterSystems Supply Chain Orchestrator 的一个关键组件是 InterSystems IRIS for Supply Chain,它使 InterSystems IRIS 提供的智能数据编织(smart data fabric)架构更接近供应链用例,并有助于加速实现价值。

*:需要 InterSystems IRIS 高级服务器

0
0 160
文章 Kelly Huang · 七月 12, 2023 4m read

在本文中,我将分享我们在 2023 年全球峰会技术交流室中提出的主题。我和@Rochael Ribeiro  

借此机会,我们就以下话题进行探讨:

  • 用于快速 API 的开放交换工具
  • 开放API规范
  • 传统与快速 Api 开发
  • 复合 API(互操作性)
  • 规范优先或 API 优先方法
  • API 治理和监控
  • 演示(视频)

用于快速 API 的开放交换工具

当我们谈论快速现代 API 开发(Rest / json)时,我们将使用两个 Intersystems Open Exchange 工具:

第一个是用于快速开发 API 的框架,我们将在本文中详细介绍。

https://openexchange.intersystems.com/package/IRIS-apiPub

第二种是使用 Swagger 作为用户界面,用于 IRIS 平台上开发的 Rest API 的规范和文档,以及它们的使用/执行。其运行的基础是开放 API 规范 (OAS) 标准,如下所述:

https://openexchange.intersystems.com/package/iris-web-swagger-ui

 

什么是开放 API 规范 (OAS)?

它是全球范围内用于定义、记录和使用 API 的标准。在大多数情况下,API 甚至在实现之前就已经设计好了。我将在下一个主题中详细讨论它。

0
0 139
文章 Michael Lei · 六月 24, 2023 8m read

 

众所周知,人工智能的世界已经到来,每个人都想利用它为自己谋取利益。

有许多平台通过订阅或私人免费提供人工智能服务。然而,由于在计算领域产生的大量“噪音”而脱颖而出的是 Open AI,这主要归功于其最著名的服务:ChatGPT 和 DALL-E。

<--break->什么是Open AI?

Open AI 是一个非营利性人工智能研究实验室,由 Sam Altman、Ilya Sutskever、Greg Brockman、Wojciech Zaremba、Elon Musk、John Schulman 和 Andrej Karpathy 于 2015 年发起,旨在促进和开发友好的人工智能,造福于人类所有的。

自成立以来,这些人已经发布了一些令人着迷的产品,如果用于良好的目的,可能会成为真正强大的工具。然而,与任何其他新技术一样,它们构成了可能被用来犯罪或作恶的威胁。

我决定测试 ChatGPT 服务,并询问它人工智能的定义是什么。我收到的答案是在互联网上找到的概念的积累,并以人类会回应的方式进行了总结。

简而言之,人工智能只能使用用于训练它的信息进行回复。利用其内部算法和训练期间输入的数据,它可以撰写文章、诗歌,甚至计算机代码片段。

人工智能将对这个行业产生重大影响,并最终彻底改变一切……。也许对人工智能将如何影响我们的未来的期望被夸大了,所以我们应该开始为了共同利益而正确地使用它。

0
1 351
文章 Qiao Peng · 十二月 2, 2022 9m read

1.数据的价值 

数据的核心价值是帮助我们决策。 

我们无时无刻不在决策,大到战略决策——为一家新医院选址,还有战术决策——鉴别产品的目标市场或抵押贷款审批,更频繁的是操作决策——决定患者的手术方案或患者药物的调整。

这些决策要求不同的决策速度,传统的数据中心已经能较好地帮助我们做战略决策、战术决策,甚至一些操作决策。但新的业务需求要求我们的决策速度越来越快,甚至借助机器学习自动为我们做出即时的决策,例如批准还是拒绝一笔信用卡交易或基于算法自动交易。 

无论是人工决策还是基于机器学习的自动决策,决策的依据是数据。数据的速度和质量决定了决策的速度和质量。要支持决策,需要数据具有如下特征: 

(1)完整 :关联且具有完整上下文; 

(2)干净 :数据质量没有问题; 

(3)及时 :在决策点上没有延迟。 

传统数据中心很难在及时性上满足要求。 

2.数据挑战

数字化浪潮下,我们面临更大的数据挑战: 

  • 数据规模:数据量已经完全超出了人工处理能力。 
  • 数据源多样性:数据源不再仅是数据库,流式引擎的消息、物联网、对象存储......它们还带来了越来越多模型种类的数据。
  • 更多的数据孤岛:更多的系统和应用被建设,进一步增加了数据孤岛现象。 
  • 跨部门的数据不一致:统计口径和统计时间的差异,造成财务部门统计的数据,总是和业务部门统计的数据对不上。 
0
0 219
文章 Hao Ma · 三月 26, 2021 4m read

图片

使用 IRIS 和 Python 创建聊天机器人

本文将展示如何把 InterSystems IRIS 数据库与 Python 集成,以服务于自然语言处理 (NLP) 的机器学习模型。

为什么选择 Python?

随着在世界范围内的广泛采用和使用,Python 拥有了出色的社区,以及许多加速器 | 库用于部署任何类型的应用。 如果您感兴趣,请访问 https://www.python.org/about/apps/

Iris Globals

我接触到 ^globals 后很快就熟悉了,它们可以用作快速获取现成数据模型中数据的方法。 因此,首先,我将使用 ^globals 存储训练数据和对话以记录聊天机器人的行为。

自然语言处理

自然语言处理或 NLP 是 AI 的一个主题,它创造了机器从我们的语言阅读、理解含义的能力。 显然,这并不简单,但是我将展示如何在这个广阔而美丽的领域中迈出您的第一步。

演示 - 来试试吧

我在这里部署了 Chatbot 应用作为演示: http://iris-python-suite.eastus.cloudapp.azure.com:8080

工作原理

机器学习

首先要知道与普通软件开发相比,机器学习具有不同的范式。 很难理解的要点是机器学习模型的开发周期。

浅显解释预警

一个标准的应用开发周期大概是这样:

开发代码 -> 测试(使用开发数据)-> 部署(真实用户数据)

机器学习代码本身不具有相同的价值。 它会与数据分担责任! 而且不是任意数据,是真实数据! 因为待执行的最终代码是由开发概念和所用数据合并生成。 所以机器学习应用周期类似于:

开发(训练)模型 + 真实数据 -> 验证 -> 部署此模型的结果

如何训练模型?

训练模型的技术有很多,每种情况和目标都需要很大的学习曲线。 在本例中,我使用的是 ChatterBot 库,该库封装了一些技术,并提供了训练方法和经过预处理的训练数据,有助于我们关注结果。

预训练的模型语言和自定义模型

您可以由此开始拥有一个基本的会话聊天机器人。 您还可以创建所有数据来训练您的聊天机器人,全面满足您的需求,但这在短时间内很难完成。 在这个项目中,我使用 en_core_web_sm 作为对话的基础,并与可以通过表单创建的自定义训练数据合并

基础架构

图片

在 Python 中使用了什么

在这个应用环境中,我使用了 Python 3.7 和这些模块:

  • PyYAML<=5.0.0
  • dash==1.12.0
  • dash-bootstrap-components==0.10.1
  • dash-core-components==1.10.0
  • dash-html-components==1.0.3
  • dash-renderer==1.4.1
  • dash-table==4.7.0
  • plotly==4.7.1
  • numpy==1.18.4
  • networkx==2.4
  • Flask>=1.0.0
  • chatterbot>=1.0.0
  • chatterbot-corpus>=1.2.0
  • SQLAlchemy>=1.2
  • ./nativeAPI_wheel/irisnative-1.0.0-cp34-abi3-linux_x86_64.whl

项目结构

本项目具有简单易懂的结构。 在主文件夹上,有 3 个最重要的子文件夹:

  • ./app:具有全部应用代码和安装配置。
  • ./iris:具有 InterSystems IRIS dockerfile,准备服务于应用。
  • ./data:通过一个将主机链接到容器环境

应用结构

现在,可以在 ./app 目录下看到一些文件:

  • chatbot.py:具有 Web 应用实现
  • iris_python_suite.py:具有一些加速器的类,通过 IRIS Native API 与 IRIS 数据库和 Python 搭配使用。

数据库结构

此应用使用 Intersystems IRIS 作为存储库,使用的 globals 包括:

  • ^chatbot.training.data:以问题和答案的形式存储所有自定义训练数据。
  • ^chatbot.conversation:存储所有对话有效负载。
  • ^chatbot.training.isupdated:控制训练管道。

其他解决方案的产品

我没有为所有对话创建报告,但这不是什么问题,使用全局图形查看器即可跟踪对话。

图片

亲自运行应用

先决条件

  • git
  • docker 和 docker-compose(以及 docker 中更多的内存设置,至少 4GB)
  • 在您的环境中访问终端

步骤

使用 docker-compose,您可以在一个环境中将所有组件和配置轻松转到 iris-python-covid19 文件夹,键入:

$ docker compose build
$ docker compose up

估计转入容器的时间

第一次运行将通过网络链接下载图像和依赖项。 如果持续时间超过 15 分钟,那可能是出现了问题,请随时来这里留言。 第一次运行后,下一次运行会好很多,只需要不到 2 分钟。

如果一切正常

一段时间后,您可以打开浏览器并转到地址:

训练数据表单

http://localhost:8050/chatbot-training-data

聊天机器人

http://localhost:8080

您应该查看 IRIS 管理门户

我暂时使用的是 USER 命名空间

http://localhost:9092
user: _SYSTEM
pass: theansweris42

如果本文对您有帮助或者有您喜欢的内容,请投票:

此应用目前正在参与 Open Exchange 竞赛,您可以在这里给我的应用 iris-python-suite 投票 (https://openexchange.intersystems.com/contest/current)

0
0 408